Pathophysiological role of zinc in ischemic brain injury

نویسندگان

  • Zhifeng Qi
  • Ke Jian Liu
چکیده

Zinc is the second most abundant metal in human body, and a relatively large amount of zinc is found in the brain, indicating its essential role in central nerve system. Zn 2+ is stored in synaptic vesicles of glutamatergic neurons and is released from the terminals for synaptic signaling. Zinc is also found in zinc containing proteins. It is estimated that the human proteome contains about 3000 zinc-containing proteins serving signaling, catalytic, and structural roles. In zinc-finger proteins, for example, a zinc ion is complexed in a zinc finger motif through four invariant cysteine and/or histidine residues to form a stable structure and conformation, which regulates protein-DNA, protein-RNA, and protein-protein interactions [1]. Twenty years ago, abnormal zinc accumulation was first observed in ischemic neurons, which leads to neuronal injuries after cerebral ischemia [2]. We recently reported that intracellular zinc dramatically elevated in neurons in the first a few hours following cerebral ischemia, resulting in neuronal apoptotic death in a rat stroke model [3]. We also found that zinc overload contributed to mitochondrial dysfunction in ischemic neurons [4]. Removing zinc with a specific zinc chelator (TPEN) reduced zinc accumulation in ischemic neurons and rescued them from cell death [3, 4]. These findings implicate zinc as a potential target to block the cascade of events leading to ischemic injury. Zinc release from ischemic neurons to extracellular matrix could produce a surrounding environment with a high concentration of zinc after cerebral ischemia. Strong activities of zinc-containing presynaptic terminals may transiently increase local synaptic zinc concentrations up to 300µM, making it available for entry or uptake by neighboring cells [5]. Microdialysis studies confirmed the increase of extracellular zinc in cerebral ischemia models. Our unpublished data showed that reducing zinc in extracellular matrix with a membrane-impermeable zinc chelator, CaEDTA, could reduce ischemia-induced microvessel injury. These findings suggest that extracellular zinc may be a critical mediator of ischemic brain insult. Astrocytes can take up the excessive extracellular zinc from synaptic cleft or extracellular matrix to maintain zinc homeostasis. However, zinc overload in astrocytes may induce astrocytic cell death. Our study indicated that zinc overload under hypoxic condition caused a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner [6]. Very interestingly, hypoxia/ reoxygenation markedly decreased zinc transporter ZnT-1 expression to reduce zinc efflux. Together, these results suggest that hypoxia/reoxygenation may impede the zinc efflux from cells, providing a novel mechanism for intracellular free zinc accumulation …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

Effect of zinc in ischemic brain injury in an embolic model of stroke in rats.

Zinc is prevalent in the mammalian central nervous system and its role in ischemic brain injury is still controversial. In the present study, the effect of zinc in ischemic brain injury was examined in an embolic model of stroke in rats. Furthermore, the effect of zinc in combination with bicuculline, a GABAa antagonist, was also examined in the ischemic injury. Treatment with zinc or zinc plus...

متن کامل

Attenuation of Focal Cerebral Ischemic Injury Following Post-Ischemic Inhibition of Angiotensin Converting Enzyme (ACE) Activity in Normotensive Rat

Background: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain inf...

متن کامل

A comprehensive approach to investigate the contradictory effects of metformin therapy in cerebral ischemic injury

Ischemic brain injury involves a complex sequence of excitetoxic and oxidative events. Metformin is proposed as one of the potential candidates for returning the body to its basic homeostasis in ischemic situations. Metformin can either protect or damage cells by activating AMP-activated protein kinase (AMPK) and its downstream factors so, it has a dual role in the cerebral ischemia context, bu...

متن کامل

Intensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion

Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017